
Decentralized Authorization and
Privacy-Enhanced Routing for
Information-Centric Networks

Mariana Raykova Hasnain Lakhani Hasanat Kazmi∗ Ashish Gehani
SRI International

ABSTRACT
As information-centric networks are deployed in increasingly
diverse settings, there is a growing need to protect the privacy
of participants. We describe the design, implementation, and
evaluation of a security framework that achieves this. It
ensures the integrity and confidentiality of published content,
the associated descriptive metadata, and the interests of
subscribers.

Publishers can scope access to the content, as well as which
nodes in the network can broker access to it. Subscribers
can limit which nodes can see their interests. Scopes are
defined as policies over attributes of the individual nodes.
The system transparently realizes the policies with suitable
cryptographic primitives. It supports deployment in hetero-
geneous mobile ad hoc environments where trust may derive
from multiple independent sources. Further, no external
public key infrastructure is assumed. We also report on the
overhead that the security adds in actual deployments on
Android devices.

1. INTRODUCTION
Information-centric networking (ICN) is a paradigm for

content distribution and retrieval. It departs from the tra-
ditional source-destination data routing model by shifting
to a framework where naming and routing are driven by the
data content. The general premise is that data movement
should be determined by the interests of nodes in the network
and the extent to which the interests match descriptions of
published content. This networking paradigm raises many
questions about the naming of objects, caching and forward-
ing algorithms, granularity of data dissemination, scaling
for large deployments, and interoperation with extant net-
works. These questions have motivated much research in the
area [27]. In 2011, the United States Department of Defense’s
Advanced Research Projects Agency (DARPA) initiated the
Content-Based Mobile Edge Networking (CBMEN) [10] pro-
gram to develop an ICN solution that works on commodity

∗While visiting SRI.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07 - 11, 2015, Los Angeles, CA, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818001

mobile devices. By 2014, ICN technologies started being
commercialized – for example, PARC is currently engaged
with network device manufacturers and service providers for
productizing its Content Centric Networking prototype [11].

An important question that is inherently related to the
new ICN routing mechanisms is the privacy of the data in
the network [1]. Unlike solutions with point-to-point commu-
nication paths, in the case of ICN the metadata needed for
the routing algorithm is directly related to the content of the
published data objects. This is because routing decisions are
based on matches between content descriptions and nodes’
interests. While information about these matches has to be
revealed in order to enable the networking functionality, the
ideal privacy goal for ICN is to reveal nothing more about
the content in the network than the output of the matching
algorithm that determines the routing. However, current
solutions reveal much more than this by providing metadata
describing the content as well nodes’ interests in the clear.

We propose a privacy-enhanced information-centric net-
working solution for publish-subscribe systems. We employ
cryptographic techniques, such as multi-authority attribute-
based encryption (MA-ABE) [18], in order to provide the
publishers of content with access control for their data. We
leverage similar mechanisms to provide flexible protection
of the metadata in the system as well. While the guaran-
tees that we obtain for the privacy of the metadata do not
achieve the ideal goal posed above, they provide a reasonable
trade-off between privacy protection and usable efficiency for
the system, given the current state of cryptographic tools.

Content sharing at the mobile edge is poised to rise dra-
matically with the recent introduction of Android Beam [5]
and iOS AirDrop [3]. Consequently, we focus on the mobile
ad hoc network (MANET) setting for our ICN architecture,
where parties can join and leave the system arbitrarily and we
cannot rely on persistent communication channels between
any parties in the network. Such a setting is relevant to
many real world scenarios for ICN applications. For example,
when emergency responders must communicate at the scene
of a disaster, conference attendees create virtual groups to
share research data, or sports fans share multimedia content
at an event venue. However, the MANET setting makes our
task for providing privacy guarantees much harder.

Even advanced cryptographic tools such as encrypted
search schemes [8, 13] and functional encryption [9, 16] do
not suffice for achieving our ideal goal. We do not pursue
extensions of these tools in order to overcome existing defi-
ciencies since this will result in high computational overhead
that would hinder the usability of our system. Instead we

provide a mechanism that allows each participant to declar-
atively scope the nodes in the network that can serve as
brokers on its behalf. The selected brokers see only hashed
versions of the metadata, which is enough for them to be able
to run a matching algorithm. Our system further provides
data integrity for the content and metadata published in the
network by applying cryptographic signatures on the data
objects and providing certificates to the participants in the
network.

A major question for any system based on cryptographic
primitives that require private credentials is how to bootstrap
trust in the system and distribute corresponding credentials.
A single central trusted authority in a dynamically changing
system with multiple parties is not a reasonable assump-
tion. This is why we built a solution that distributes trust
across multiple authorities and use cryptographic primitives
designed for such a decentralized trust model. We do not
assume that the participants in the system already have
their credentials in advance. Instead, we develop credential
distribution protocols assuming only short secrets shared
out-of-band between parties and their trusted authorities.

The system we describe is an extension of the Haggle
framework [21] that was originally designed for opportunistic
networking. Its modular architecture supports development
and integration of a wide range of underlying protocols,
routing algorithms, caching schemes, and security designs.
The solution we created for ensuring the authenticity and
confidentiality of content and queries is agnostic to the other
aspects of the system. It can be composed regardless of
the routing and caching schemes used. We have evaluated
the overhead that our security solution adds and report the
results here.

We describe our goals in Section 2 before providing an
overview of our approach in Section 3. Section 4 outlines
our general security architecture, which can be used by most
ICNs. Section 5 describes our specific design, including the
protocols used. Section 6 explains the changes we made to
a mature ICN to implement our concrete design. Section 7
reports on the overhead from security when it is added to a
real world Android deployment. We describe our contribution
in relation to previous work in Section 8 and conclude with
its highlights in Section 9.

2. GOALS
ICNs route content based on an associated description

(such as an identifier, a name, or tags) and the interests of
nodes in the network. ICN routing algorithms thus depend
on the ability to match descriptions of published data and
the interests advertised by other nodes. In existing ICN
solutions, requests for content as well as content descriptions
are visible to any node in the network, which introduces a
substantial privacy problem.

The goal of our work is to mitigate the privacy concerns of
publishers that tag content and subscribers that request this
content in an ICN. The problem of ensuring data confiden-
tiality is addressed in traditional packet-based networks by
using encryption for all data sent between a specific source
and destination [24]. We note that we cannot hope to achieve
the same level of privacy in the context of an ICN because
this will render impossible most ICN routing functionality.
Thus, our ideal goal will be a solution that hides everything
about the published content and subscribers’ requests except
the routing decisions.

Communication networks allow data to be exchanged by
multiple parties. To realize the utility of the network, we
need to provide a means for users to access the content that
they are authorized to receive while protecting the data from
everyone else in the network. In traditional networking set-
tings this problem can be solved using public key encryption.
Since the intended recipient in known to the publisher, the
sender can encrypt the content with the receiver’s public key.
In the ICN setting, however, a particular piece of content
may have multiple recipients. Therefore, we need a more
flexible mechanism to enforce access control at the point of
encryption, before the potential receivers are known.

Another important requirement for ICNs, where content
does not move directly from publishers to subscribers, is to
guarantee data integrity. An ICN security solution should
let subscribers verify the origin of the content that they
receive as well as the integrity of the content. Together
these will address the threat of maliciously injected data
in the network, by binding the content to its publisher and
guaranteeing non-repudiation.

Many of the nodes in a mobile ad hoc ICN may not have
direct or stable connections. This is why we need routing al-
gorithms that only rely on credentials that each node receives
when it joins the network. In particular, routing should not
require direct point-to-point communication between pub-
lishers and subscribers. This rules out solutions where a
publisher chooses a secret key to compute the tags for its
content and the same secret key is required to generate the
interest metadata that can be matched against the content
tags.

Our ICN’s security goals have the following requirements:
• Content integrity – any receiver can verify the source and
integrity of the obtained content.
• Content confidentiality – publishers can limit access to the
content that they publish.
• Metadata confidentiality – minimize the exposure of the
contents’ descriptive metadata and nodes’ interest.
• Intermediated operation – data exchange should not require
direct interaction between publishers and subscribers.

3. OVERVIEW
We propose a security solution for ICN publish-subscribe

systems. It addresses the requirements described in Section 2
by implementing the following extensions.

Data integrity. We employ cryptographic signatures [22]
to provide data integrity for the content sent in the network.
Each node signs content that it publishes and provides a
certificate from an authority that binds the node’s identity
to a signature verification key. This allows the subscriber
to check the authenticity and integrity of the content they
receive.

Since we are dealing with a dynamic network structure
where participants join and disconnect at an arbitrary rate,
and there may not be time for nodes to get certified by a
widely trusted authority in the network within this short
period, we introduce a trust chaining approach that expands
the set of nodes that trust some data as it gets forwarded in
the network.

Data confidentiality. We use attribute-based encryption
(ABE) [23] as a mechanism for protecting the content in a
setting where the potential receivers are not known at the
time of publication. The ciphertext-policy attribute-based
encryption [7] primitive embeds an access policy directly

into each ciphertext, and associates a set of attributes with
each decryption key. A key can decrypt a ciphertext if and
only if its attributes satisfy the encryption policy. Nodes
receive keys containing appropriate attributes (such as their
organization, position, or role) from authorities. Thus, each
publisher can encrypt each piece of content with a different
access control policy that limits the set of nodes that can
decrypt and learn the content based on their attributes.

Since we are dealing with a setting where it is difficult to
agree on a single trusted authority that issues attributes for
all the users, we use multi-authority attribute-based encryp-
tion (MA-ABE) [18] that decentralizes the trust by having
several independent authorities that can issue decryption
keys corresponding to different attributes. This allows maxi-
mum flexibility for the publisher.

Metadata confidentiality. The routing decisions in our
ICN solution are made based on metadata, which consists
of the tags describing the published data content and the
interests declared by subscribers. The routing mechanism of
the system aims to move content towards subscribers inter-
ested in it. This is achieved through hop-by-hop matching
of content tags and subscribers’ interests. These matching
decisions are an inherent privacy leak, but are necessary for
the functioning of the system. While there are cryptographic
techniques [9, 16] that can be used to minimize this leakage
at the cost of substantial computational overhead, we adopt
an alternative approach that achieves a trade-off between
privacy and efficiency. We allow publishers and subscribers
to scope the nodes that can make routing decisions for their
data by scoping the access to the associated metadata using
MA-ABE in a manner similar to the way it is used for content
encryption.

4. ARCHITECTURE
We present the architecture for our ICN solution. It aims to

accommodate the dynamic nature of our system where nodes
join and leave the network at arbitrary rates. Such a network
cannot guarantee a stable connection between any two nodes
that can accommodate several rounds of communication.

4.1 Participants
We construct an ICN solution for a decentralized mobile

publish-subscribe system. In this model there are four roles
for nodes in the network: publishers, subscribers, brokers
and authorities. Each node in the network can assume more
than one of these roles in the different stages of the protocol.
Publisher nodes add content to the network along with de-
scriptive content tags that will be used for routing. Subscriber
nodes periodically broadcast node descriptions that include
their interests. These descriptions are used by other nodes
to identify which content matches a remote node’s interests.
Broker nodes facilitate the data routing in the network. They
are intermediate nodes that forward content between publish-
ers and subscribers, based on matches between the content
tags and node interests. In addition to these three roles for
ICN participants, some of the nodes in the system will serve
as authorities that provide the credentials necessary for the
cryptographic protocols in the system.

4.2 Co-Certification
Similar to other systems, the root of trust in our ICN

solution is an authority that issues credentials for the par-
ticipants. However, since we consider a distributed setting

where we cannot guarantee that there is a single central
authority trusted by everyone, we have developed a system
that allows multiple independent authorities so trust can be
spread across them.

Every node in the network chooses its trusted authorities
before it joins the network. The initial trust relationship
between a node and its authorities is established out-of-band.
In this phase the node shares a secret key with each of its
trusted authorities. This key can be derived from any shared
information, such as a PIN, passphrase, or biometric scans.
The node will later use the shared key in the communication
protocol to send secure credential requests to the correspond-
ing authority. The authorities in our ICN solution can serve
both the role of certificate authorities (that issue identity
certificates to nodes) as well as authorization authorities
(for the ABE scheme, granting encryption and decryption
attributes to nodes).

The identities of nodes in the network are established
through the certificates that they have obtained. A node
will trust only content coming from parties in the network
that it trusts – that is, parties that possess certificates issued
by authorities trusted by the node. Since we may have
multiple authorities in the network, we require at least one
certification from a common trusted authority to establish
a trust relationship between two parties. Thus, a publisher
and subscriber must be co-certified – that is, they have at
least one certification authority in common.

4.3 Content Access Control
We use MA-ABE to restrict access to content published in

the network. Publishers encrypt content with an access policy
before sending it to a remote node. The policy specifies who
can access the data, or more specifically what combination
of attributes are required for gaining access. Note that each
authority has a unique identifier, which determines the set of
attributes for which it can issue encryption and decryption
keys. The name of each attribute links it to the authority
that issued it.

With this approach each publisher can construct a policy
for its data requiring that any party that can decrypt the
ciphertext has to possess a set of attributes issued by author-
ities that the publisher trusts. The publisher needs to know
only the attributes that it uses in its policy.

The distribution of the MA-ABE decryption keys is part of
the ICN solution. Each node requests encryption and decryp-
tion attributes from the authorities that it has established
trust relationship with. It uses the shared secret key with
the authority to establish secure communication for these
requests. Nodes may request encryption and decryption at-
tributes either on demand as they need them to encrypt and
decrypt content or with pre-provisioning – that is, requesting
encryption and decryption attributes as soon as they join
the network.

4.4 Metadata Access Control
In our ICN framework the routing of content is determined

by matching content tags and nodes’ interests. Subscribers
propagate their node descriptions containing a list of inter-
ests to other nodes that they encounter. Similarly publishers
share content with interested remote nodes that they en-
counter. Since nodes aggregate the interests of others’, they
can serve as brokers to route content from publishers to sub-
scribers. In order to perform its task, a broker must able to

check for matches between content tags and node interests.
From the point of view of maintaining nodes’ privacy, we
want to limit the information that brokers can learn about
the content and node descriptions that they receive. Ideally,
the brokers would learn just the outcome of the match and
nothing more.

The ideal solution for handling the metadata is to have it
encrypted with a scheme that allows the computation of a
matching function on the ciphertexts of tags and interests.
This would not allow the brokers to learn anything more
about the encrypted tags and interests. Cryptographic tech-
niques such as functional encryption [9, 16] or searchable
encryption [8, 13] are potential candidates for a solution.
Functional encryption provides the ability to generate de-
cryption keys that reveal only the evaluation of a particular
function on the encrypted data, rather than the whole plain-
text. However, we chose not to pursue a solution based on
this since the only known construction of this primitive [16]
is extremely computationally expensive, which is untenable
due to power and processing limitations of mobile devices.

Searchable encryption allows ciphertext to be queried with-
out performing decryption. It provides functionality for gen-
erating search tokens for keywords. The tokens can then
be used to test whether a ciphertext contains the keywords.
The issue with known constructions is that the search tokens
need to be generated using the private parameters for the
scheme. In our publish-subscribe setting this means that
subscribers will either need to know the private parameters
for the encryption used by the publishers (which does not
satisfy our trust model), or will have to request search tokens
from the publishers (which is also not viable since subscribers
and publishers may not be able to communicate directly).

We construct an alternative solution for the metadata
in the system that does not achieve the goal of the ideal
from a privacy point of view, but it provides a reasonable
tradeoff between confidentiality and efficiency guarantees.
We replace the content tags and the subscribers’ interests
with their hashes using a single function that is fixed for the
whole system. The hash values of the metadata hide the
exact content but reveals equality patterns across content
tags and subscribers’ interests. In particular, this allows an
adversary to compare the same tags on different pieces of
content and in different nodes’ interests.

In order to mitigate the additional leakage from the meta-
data represented as hashes, we allow publishers and sub-
scribers to restrict the nodes that can act as brokers for their
content and interests. We realize this functionality using
MA-ABE again. A publisher encrypts content tags under
a policy that specifies which nodes are allowed to serve as
brokers for the data. Similarly, subscribers use MA-ABE
to encrypt their interests with a policy that specifies which
nodes can serve as brokers on their behalf. Nodes that receive
published content and interests can check for matches if and
only if they are in the sets of authorized brokers for both the
publisher and the subscriber.

5. DESIGN
We designed an access control architecture suited for

publish-subscribe ICNs. Our goal was to minimize the as-
sumptions about pre-shared key material between partic-
ipants. In contrast to many systems, we also implement
the protocols needed for credential distribution. Finally, we
provide simple flexible primitives for applications to specify

how to secure the actual distribution of their content.

Data Forwarding. The ICN forms an overlay and is ag-
nostic to the underlying network transport – that is, node
to node communication can use any protocol, such as UDP,
TCP, or even UDP broadcast, over WiFi, Bluetooth, or other
radio types. Since publishers and subscribers may not be able
to communicate directly, a forwarding mechanism is needed.
Subscribers flood their node descriptions to their neighbors.
Data objects are propagated towards nodes with interests
that match the content tags. We note that the nodes that
receive forwarded published data objects are not necessarily
subscribers. They may also be intermediate brokers that
have propagated node descriptions. The choice of whether
to cache a data object at a node depends on the application
of a local utility function to the content tags, and the state
of the local cache.

Cryptographic Primitives. Our constructions use multi-
authority attribute-based encryption (MA-ABE), which con-
sists of the following algorithms: SetupABE(1λ), which gen-
erates constants for the scheme using security parameter λ;
EncryptABE(P,m), which encrypts a message m under a policy
P; DecryptABE(ct,SKα1,...,αn), which decrypts a ciphertext
ct if and only if the attributes α1, . . . , αn of the decryption
key satisfy the encryption policy P used to produce ct.

We also use a signature scheme which has the following al-
gorithms: Gen(1λ), which generates private signing key SKsign

and public verification key VKsign; Sign(SKsign,m), which pro-
duces signature σ for a message m; and Verify(VKsign, σ,m),
which verifies the signature σ for m. The signature scheme
guarantees that no party that does not have the secret sign-
ing key can produce a valid signature that can be verified
with the corresponding public verification key.

5.1 Data Objects
Applications publish and receive data through our com-

munication protocols in units called data objects. They have
the following structure:

{ MetaData }[Content]

which consists of two parts – the metadata that is used for
forwarding the data object, and the content that is used by
the receiver.

The metadata of a data object consists of several tags that
can serve different purposes. One of the tags specifies the
type of the data objects. The main types of data objects are
published data, node descriptions containing the interests of
nodes, and messages used in credential distribution protocols.

Tags in the metadata are used by the forwarding algorithms.
These can be tags describing the content of a published
data object or a subscriber’s interests in a node description.
We note that tags and interests are not unique identifiers.
Different data objects can share some of the tags that describe
their content. Further, subscribers may have intersecting
sets of interests in their node descriptions.

We can also use the metadata to emulate point-to-point
communication between two parties. This is done by having
the sender tag its messages with the identity of the receiver,
while the receiver includes in its node description interests
associated with its identity. The forwarding mechanism
moves data objects from node to node based on matching
data object tags to node interests, as described above. As a
result, the data objects will be forwarded from the sender to
the receiver, even if the connectivity is intermittent. Such

point-to-point communication will be used in the protocols
for credential distribution, as described in Section 5.2.

Metadata Confidentiality. Routing requires that brokers
must be able to compare tags and interests in order to decide
whether to forward a data object. At the same time we want
to minimize the information that a broker learns about the
data object if it is not authorized to access the content.

As discussed in Section 4.4, we adopt a solution that offers
a tradeoff between privacy and the efficiency of matching
metadata. The metadata used for forwarding consists of
interests, object type tagObjType, and other tags, denoted by
t1, . . . , tn. These are all hashed with a function H():

MetaData = (tagObjType, H(t1), . . . , H(tn))

When a user node U published a data object, it can scope the
set of nodes in the ICN that are allowed to serve as brokers
for it. This is done by defining the chosen set with a broker
access policy PMetaData, and then encrypting the metadata
with this policy using MA-ABE. The resulting data object
has the form:

{ ctMD = EncryptABE(PMetaData,MetaData) } [Content]

Brokers attempt to decrypt the metadata of all data objects
that they receive. When a broker is able to decrypt the
metadata of a data object, it checks the extent to which the
hashed content tags H(ta) match the hashed interests H(ib)
of each node description with metadata that it was able to
decrypt. If there is a sufficient match between the content
tags and a remote node’s interests, the broker forwards the
data object towards the subscriber.

Since nodes may not have credentials when they make
security requests and receive responses, the data objects
that contain such messages are handled differently. Their
metadata is not encrypted with MA-ABE. Instead they are
routed point-to-point, revealing only the source and desti-
nation identifiers. No other information is present in the
metadata, as described further in Section 5.2.

Content Confidentiality and Integrity. A user node U
can limit which nodes in the ICN should be able to access the
content they publish. This is achieved in a manner similar to
the way brokers are selected. The publisher defines the set of
authorized subscribers by specifying an access policy PContent.
This policy can be (and is likely to be) more restrictive than
the broker access policy. The publishing node uses MA-ABE
to encrypt the content with the specified access policy.

In order to guarantee the integrity of the content and the
metadata, the publisher appends a signature. A publishing
node thus emits data objects with the form:

{ctMD = EncryptABE(PMetaData,MetaData)}
[ctContent = EncryptABE(PContent,Content)]

σ = Sign(SKsign,U(ctMD||ctContent)

Data objects used to convey security requests and responses
to and from authorities are not encrypted with MA-ABE
since nodes may not have sufficient credentials to do so.
Instead, the integrity of the content is assured using the
secret key shared by the user and authority and a MAC –
that is, a keyed hash function. Similarly, the confidentiality
of the content is ensured using symmetric encryption with
the shared secret. This is described further in Section 5.2. In
practice a key derivation function is used to obtain different
keys for hashing and encryption from a single shared secret.

We note that for efficiency purposes, we encrypt a short
symmetric key K with the MA-ABE scheme and then en-
crypt the actual message M using symmetric encryption
with key K – that is, whenever we use EncryptABE(P,M),
the actual implementation is of the form EncryptABE(P,K),
EncryptsymK (M). This holds for the encryption of both meta-
data and content.

5.2 Bootstrapping Credentials

Node CA

SDReq(CertificateSigningRequest,Φ(U,U))

SDRes(SignedCertificate,Φ(U,A),Φ(A,A))

SDReq(AttributeRequest,A · α)

SDRes(Attribute,A · α,KeyGenMA−ABE(A,A · α))

Figure 1: Security data requests for certification
or attributes originate from user nodes. They are
handled by authorities, which send security data
responses with signed certificates or cryptographic
keys corresponding to attributes.

Since the setting that we aim to address does not allow for
centralized certification authorities, we adopt an approach
where any party in the network can be reconfigured to serve
as a certification authority. The only assumption about pre-
shared keys in our system is the following: nodes in the
system will have shared private keys with authorities from
which they can request access credentials.

When a node A is configured in the authority mode of
operation, it publishes a node description that includes an
interest tagrequest,A, which specifies that it wants to receive all
credential requests for itself. A user U who has a shared key s
with the authority A can generate a credential request M to
the authority as follows: U derives a key K for a symmetric
key encryption scheme PKE = (Setup,Encrypt, Decrypt) and
a key K′ for a message authentication code MAC [6]. It then
generates SDReq(M), a security data request from user U
to authority A with message M , defined as follows:

{tagrequest,A }
[ct = EncryptK(U,A, tagrequest,A,M), h = MACK′(ct)]

At the same time, U floods its node description that
includes an interest tagresponse,U, which specifies that the user
wants to receive data objects with responses to its credential
requests. When the authority A receives the request, it
publishes a data object SDRes(M), a security data response
from authority A to user U with message M ′, defined as
follows:

{tagresponse,U}
[ct′ = EncryptK(A,U, tagresponse,M), h′ = MACK′(ct′)]

Nodes use security data requests to obtain both certificates
and ABE encryption and decryption attributes from the
respective authorities. The security properties of PKE and
MAC guarantee that nobody can issue requests on behalf of
another user or receive the credentials of another user. They
also ensure that tampering with the request and response
messages will be detected.

5.3 Building Trust
To avoid attacks where malicious nodes masquerade as

other nodes in the system, we need to establish cryptographic
identities for the nodes in the network and then build trust in
those. We use certificates as a means for node identification,
where a node certificate contains a signature verification
key that can be used to bind particular content to that
node. There are two different types of certificates: self-
signed certificates and certificates signed by a certificate
authority (CA). The basic trust premise in our system is
that a node trusts another node if and only if there is at
least one authority that has certified both of them.

We do not assume that nodes in the system have received
their certificates from trusted authorities in advance. When a
node U joins the network, it has only a self-signed certificate
Φ(U,U). It sends to any trusted authority A, a security
data request SDReq(M) with message:

M = {CertificateSigningRequest,Φ(U,U)}

The authority sends back a signed certificate for the user
Φ(U,A) in a security data response SDRes(M) with message:

M = {SignedCertificate,Φ(U,A),Φ(A,A)}

When two nodes encounter each other for the first time,
they establish a connection and exchange their certificates.
A remote user U′ is added to the set of nodes trusted by
node U if and only if it presents certificates that pass the
following verification check:

Verify(Φ(U′,U′),Φ(U′,A)) ∧ Verify(Φ(U′,A),Φ(A,A))

where A is an authority trusted by the node U.
A node trusts the content of a data object that it receives

only if it is signed by a node that it trusts.

Content Re-signing.
When a node Ui forwards data objects:

{ctMetaData}[ctContent]σUi−1 =

Sign(SKsign,Ui−1 , ctMetaData||ctContent)

that are signed by another user Ui−1 that is trusted by Ui,
it re-signs the data object with its own signature σ:

{ctMetaData}[ctContent]σUi = Sign(SKsign,Ui , ctMetaData||ctContent)

This allows published data objects to transition across differ-
ent trust domains.

Signature Chaining.
As a data object moves across the network, its lineage is

recorded in its metadata. This can be used later to verify
the source and the forwarding path of a particular data ob-
ject. For this purpose we create signature chains 〈c0, · · · , cn〉
which are computed as follows:

c0 = Sign(SKsign,U0 , ctMetaData||ctContent)

ci = Sign(SKsign,Ui , ci−1) for 1 ≤ i ≤ n

where U0 is the publisher of the data object and U1, . . . ,Un

are the nodes that forward the data object. Thus, the data
object forwarded from Ui to Ui+1 is of the form:

{ctMetaData}[ctContent]σUi〈c0, · · · , ci〉

Publisher

Broker

Subscriber

{MetaData}[Content]σ〈c0〉

{MetaData}[Content]σ′〈c0, c1〉

Figure 2: Signature chaining serves two purposes.
First, it ensures that content flows through trusted
paths from the publisher to the subscriber. Second,
it provides subscribers with certified provenance.

5.4 Attribute Provisioning
We use MA-ABE to enforce access control over the content

and metadata of data objects. Nodes obtain MA-ABE en-
cryption and decryption credentials from the authorities that
are responsible for the respective attributes. An authority
A can issue credentials for attributes of the form A · α. A
node requests an attribute credential for A · α by sending a
security data request SDReq(M) with message:

M = {AttributeRequest,A · α}

If the authority grants the request, it publishes a security
data response SDRes(M ′) with message:

M ′ = {Attribute,A · α,KeyGenMA−ABE(A,A · α)}

6. IMPLEMENTATION
The functionality of the security framework is designed to

compose with the other features of the underlying ICN [25,
26]. Since content encryption occurs at file granularity, it
is transparent to the routing, caching, and network coding
components (that operate on data objects corresponding
to encrypted files instead of the original ones). Control
metadata is not encrypted, allowing delay-tolerant routing,
utility-based caching, and context-aware network coding to
operate unchanged. Since the hashing of tags and interests
supports equality checks, threshold matching of content to
interests continues unmodified at nodes authorized to serve
as brokers. The inability of unauthorized nodes to broker
matches results in the only change in system behavior – that
is, since content must flow through a subset of all possible
connections, routing robustness may be sacrificed.

We implemented our solution by extending the Haggle
framework, as shown in Figure 3. The Haggle framework
consists of two codebases – the Haggle kernel and a library
libhaggle that ICN applications use. Each node on the
network runs an instance of the Haggle kernel. Applications
can publish data objects and express their interests by com-
municating with the local Haggle kernel. This is done via the
shared library that communicates with the kernel through
a socket. The kernel is responsible for transferring content
between nodes, matching application interests to available
content, and delivering content to applications.

The kernel on each node is configured with default security
parameters (such as shared secrets, authority details, and
access control lists) in its configuration file. The kernel is

responsible for handling key management and distribution of
MA-ABE attributes, as well as handling trust management
and verification of certificates and signatures. All of the
security operations are transparent to applications. To allow
publishers to restrict access to content, the kernel checks for
Access metadata attached to data objects being published.
This metadata is known as a content attribute in Haggle
parlance, and differ from the MA-ABE attributes that serve
as credentials. If the Access attribute is present, its value is
used as the access policy for the data object. The content will
then be encrypted with the access policy specified. At each
receiving node, the kernel will check the encryption status of
each data object, perform decryption if required, and deliver
the plaintext data object to any local subscribing applica-
tions. Thus, access control is transparent to applications
and publishers only need to add an access policy tag (using
existing calls already present in libhaggle). Subscribers will
receive decrypted content with no application modifications.

The Haggle kernel is an event-based architecture with
multiple managers cooperating to provide various pieces of
functionality. Each manager runs in its own thread and com-
municates with other managers by sending events through
a shared queue. Each manager can also instantiate its own
background worker threads for computationally-intensive op-
erations. The ApplicationManager handles communication
with local publishing and subscribing applications. The Data-
Manager is responsible for data object storage, caching, and
purging. The NodeManager manages remote node interests
and matching. The ForwardingManager is responsible for
routing decisions. The ProtocolManager handles low-level
protocol communications between nodes. The SecurityMan-

ager is responsible for security. The layer-less architecture
allowed us to make most of our changes in the SecurityMan-
ager, with minor modifications in other managers.

Access Control. Using access control is transparent to
end-user applications. Publishers only need to add an access
policy tag. Subscribers receive decrypted content without
any changes to applications.

Figure 3 illustrates the flow of a data object during pub-
lication. In step 1, a local application publishes a data
object with an access policy using libhaggle. The Appli-

cationManager receives this, and notifies the DataManager

(2). It is then inserted into the DataStore (3) and other
managers are notified about this through the Event Queue
(4). The SecurityManager checks for the presence of an
access policy (5). If one is present, and the node has all the
MA-ABE attributes needed to perform the encryption, an
asynchronous task is created to Encrypt the content. Other-
wise, a SecurityDataRequest is issued, and the encryption is
performed upon receipt of the necessary attributes. During
this encryption task, a symmetric encryption key is gener-
ated, and the content is encrypted with this key. This key
is encrypted using MA-ABE and referred to as a capability.
A new data object is created with the same metadata, the
capability, and the encrypted content. This is then inserted
in the Event Queue (6), where the NodeManager looks for
remote nodes that are interested in this content (7). If any
remote nodes are interested (8), ForwardingManager then
makes routing decisions and asks the ProtocolManager to
send the data using a link layer protocol (9). The Protocol
Manager checks if the data object is destined for an applica-
tion, in which case a plaintext version of the content is sent.
If the data object is going to a remote node, the ciphertext

Figure 3: Haggle provides an event-based ICN ker-
nel. Each feature is implemented in a manager run-
ning in a separate thread. Applications can scope
access to published content simply by tagging it
with an Access attribute (with π denoting the pol-
icy here).

version of the content is used.
A similar process happens at the receiving end. If an

encrypted data object arrives and an application is inter-
ested in it, the SecurityManager enqueues the data object
for decryption. A check is performed to see whether all
the necessary MA-ABE decryption attributes are present.
If not, a SecurityDataRequest is issued. After the relevant
SecurityDataResponse is received, the symmetric encryption
key is recovered from the capability via a Decrypt operation.
The key is then used to symmetrically decrypt the content. A
new data object is created with the same metadata, but with
the decrypted content and without the capability tag. This
plaintext is then made available to the interested application.

Integrity. The SecurityManager intercepts incoming node
descriptions and extracts certificates present during the ex-
change of routing metadata. These certificates are verified
using the mechanisms described in Section 5.3. When data
objects are received from applications, the SecurityManager
automatically signs them and updates the signature chain.
When data objects are received from remote nodes, the Secu-
rityManager performs signature verification and drops them
if verification fails.

When a data object is to be sent, the SecurityManager
checks whether a signature is present. If no signature is
present, the sending is blocked, and it is enqueued for signing.
The SecurityHelper will compute a signature and re-queue
the data object for sending. When a data object is received,

Overhead Time (s) Space (KB)
Linux Android

No security 0.107 0.793 51,794
Signatures 0.107 0.888 51,873
Encryption with Cached Access Policies 0.145 0.924 52,194
Encryption with Uncached Access Policies 0.422 2.391 52,194

Table 1: Time and space overhead of encryption and signing.

L

A1

P4

P3

P2

P1
M1(1.4m/s)

M2(1.4m/s)

M3(1.4m/s)

100m

30mR

P7

P6

P5

A2

Figure 4: There are two groups of nodes arranged in a grid formation. Three data mules move back and forth
to transfer data, staying for 60 seconds each time.

the SecurityManager looks up the relevant node certificate
in a store of verified certificates. If one is present, then a
signature verification task is enqueued. The SecurityHelper
will perform the signature verification and pass the data
object on to other managers. If no verified certificate is
present, or the verification fails, the data object is dropped.

7. EVALUATION
Our security design uses the computationally expensive

MA-ABE primitive. Consequently, the result of transfor-
mations that use it are cached. We expect that this will
ameliorate the impact on system performance with typical
workloads. This was confirmed through empirical studies.

We evaluated the implementation in two environments.
The first was a testbed of 30 Samsung Nexus S devices run-
ning Android Gingerbread (2.3). The second environment
consisted of Linux containers, spawned by the network emu-
lation framework, NRL’s CORE 4.3 and EMANE 0.7.3 [2].

Micro-Benchmark. We ran micro-benchmarks to mea-
sure the speed of cryptographic primitives used. On Linux,
we also ran a version of the tests with the CPU limited to
mimic the resource constraints of mobile Android devices.
We used a simple two node test, with the user node publish-
ing data objects, and the authority node subscribing to data
objects. 512 KB files, 2048-bit RSA signatures, and access
policies with eight MA-ABE attributes were used. 101 data
objects were published. The results are shown in Table 1.

We can see that the time overhead added by signatures
is minimal. Encryption has a more noticeable temporal
overhead. However, when the capabilities have already been
cached (as is the common case in practice), the overhead
is much lower since the expensive MA-ABE operations do
not have to be performed. A small amount of bandwidth
overhead is introduced by the use of signatures since the node
descriptions contain certificates. The encryption bandwidth

overhead is from the capabilities that must be sent with each
data object, and the requests for MA-ABE encryption and
decryption attributes.

Macro-Benchmark. To obtain repeatable tests, we use
emulation to model real-world mobile performance on a Linux
server. The same source code was cross-compiled to ARM
code that ran on Android, and x86 binaries that ran in
Linux containers for the emulation. We used the CPULimit
tool with a threshold of 30% to slow the performance of
Haggle processes to match the performance of our Android
devices, as reported in Table 1. We used CORE and EMANE
for resource isolation, node mobility modeling, and network
emulation. Haggle instances were started in virtual nodes
that moved in the pattern described in the scenario below.

Scenario. The scenario setting is illustrated in Figure 4.
The events run for 900 seconds with two authority nodes,
A1 and A2, and seven publishers, P1 · · ·P7. At 1, 5, 11, and
16 seconds, one node in each group publishes a data object
with an access policy involving both authorities. All nodes
subscribe to these data objects, so we expect 112 intra-group
deliveries and 136 inter-group deliveries. Starting at time 21,
there are seven intra-group data objects published (with an
access policy involving only one authority), with a total of
100 expected deliveries.

Results. Our emulation results are presented in Figure 5.
We plot the number of data objects received at each point
in time. We measured this for five different configurations:
no-security, signatures, signatures-static, encryption, and
encryption-static. The static cases refer to settings where
nodes were pre-configured with the appropriate certificates
and MA-ABE attributes, so they did not need to make
SecurityDataRequests. These settings are useful in scenarios
where the network topology is known beforehand.

In all cases except encryption, publishing can start from
time 1, as there is no need to wait for MA-ABE attributes.
Thus the 212 intra-group deliveries can complete quickly.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900

D
a
ta

 o
b
je

c
ts

 r
e
c
e
iv

e
d
 b

y
 t
im

e
 t

Time (s)

System Performance

encryption
encryption-static

no-security
signatures

signatures-static

Figure 5: Data objects delivered over time.

The remaining 136 inter-group deliveries require the use of
mules, so they take slightly longer to complete.

For encryption, there can be no publishing before time
21, due to the need for MA-ABE attributes. The initial 100
intra-group deliveries then complete gradually as publishers
get the keys they need from the local authority and then
so do the subscribers. There are no further deliveries until
the 250 second point, by when mules have arrived with keys
from authorities located in the other group. Publishing then
begins, and intra-group deliveries commence. The mules
make some more trips and by the 500 second mark the rate
of delivery jumps as inter-group deliveries complete.

We can see that signatures and encryption affect delivery
latency. This is mostly due to the SecurityDataRequests
and SecurityDataResponses that have to travel through the
mules. With static provisioning, this overhead is eliminated,
and the only extra latency is due to the time and space
overhead seen in the micro benchmarks in Table 1.

8. RELATED WORK
In the 1980s and 1990s, the Internet was primarily used

for point-to-point communication. After the advent of the
Web, it was increasingly used for content distribution. In
2000, TRIAD described the use of a content layer to handle
routing, caching, and transformation [12]. Directory service
responses were to be authenticated with digital signatures,
while communication between endpoints was to be protected
at the network layer, with an analog of IPSec. OceanStore
proposed distributed access control using content encryption
[20]. The assurance provided by our framework subsumes
this. In particular, the integrity of metadata (used for content
search) is protected with signatures, and access to content

is limited via encryption. By 2009, CCN [11] and its deriva-
tives [19] had introduced flow balance, with interests being
consumed by data flowing back to subscribers. This provides
resistance to denial of service attacks. In future work, we
plan to leverage strong node identities to explore reputa-
tion tracking and anomaly detection for combating similar
threats.

Our work differs from previous research on securing ICNs
in several respects. We do not assume the existence of an
external infrastructure for providing cryptographic keys [19].
Instead each node defines its own identity (via self-generated
signing and verification keys) that is then attested by nodes
that it deems to be authorities. Similarly, we do not rely
on authorization services for access policies to be resolved
[15]. We use a cryptographic primitive that supports flexible
specification of access control policies during encryption. Res-
olution can thus occur as soon as content is available, rather
than when a policy server becomes reachable. Moreover,
we provide the first ICN implementation of cryptographic
access control that supports the use of multiple, independent
authorities. We enhance the privacy of individual interests,
rather than just preventing surveillance at scale [4]. We do
not rely on self-certifying names for integrity assurance [17].
By decoupling naming from content identification, we allow
flexible resolution of interests to content. At the same time
we provide strong assurance that a piece of content came
from the claimed publisher. In particular, we do not require
applications to verify the authenticity of content [14]. Finally,
we provide the first design and implementation of certified
content lineage, allowing subscribers to identify and verify
both the origin as well as the path through which content
arrived from a publisher.

9. CONCLUSION
We described the design, implementation, and evaluation

of a security architecture for ensuring the integrity and confi-
dentiality of content, as well as the metadata that describes
it. The metadata is utilized by brokers that mediate between
publishers and subscribers, based on the match between con-
tent tags and node interests. The protection of this metadata
is necessary to mitigate attacks on the privacy of publish-
ers and subscribers. It is worth noting that this problem
is particularly challenging when every node can serve as a
publisher, broker, and subscriber.

We utilize a recent cryptographic primitive, multi-authority
attribute-based encryption, to reduce the access control prob-
lem to credential management. Nodes are issued credentials
with their attributes (such as their name, organization, or
location) from one or more authorities. Access policies can be
declared as any Boolean combination of node attributes. This
allows access to content and its descriptive tags to be scoped
by publishers. Similarly, subscribers can cryptographically
limit the nodes that can access their interests.

Our work is an extension of the Haggle opportunistic
networking system. We report on the overhead added for
ensuring the integrity and confidentiality of content on both
Linux desktops and Android smartphones. We found that
integrity protection does not add noticeable overhead. Typ-
ical confidentiality protection (where access policies have
been previously defined) adds modest overhead. Publication
with new access policies adds latency to the transfer of con-
tent. However, this does not reduce the quantity of data
objects that get through in a real scenario with mobile nodes.

Acknowledgements. We thank Mark-Oliver Stehr for his
insights on extending Haggle. This material is based upon
work partially supported by the National Science Founda-
tion under Grant IIS-1116414. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

10. REFERENCES
[1] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda,

Dirk Kutscher, and Borje Ohlman, A survey of
information-centric networking, IEEE Communications
Magazine, Vol. 50(7), 2012.

[2] Jeff Ahrenholz, Comparison of CORE Network Emulation
Platforms, 29th IEEE Military Communications Conference,
2010.

[3] Apple AirDrop,
https://www.apple.com/ios/features/#airdrop

[4] Somaya Arianfar, Teemu Koponen, Barath Raghavan, and
Scott Shenker, On preserving privacy in content-oriented
networks, ACM SIGCOMM Workshop on
Information-Centric Networking, 2011.

[5] Android Beam, http:
//developer.android.com/guide/topics/connectivity/nfc/

[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk, Keying
hash functions for message authentication, 16th Annual
International Cryptology Conference on Advances in
Cryptology, 1996.

[7] John Bethencourt, Amit Sahai, and Brent Waters,
Ciphertext-policy attribute-based encryption, 28th IEEE
Symposium on Security and Privacy, 2006.

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano, Public key encryption with keyword
search, 23rd International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2004.

[9] Dan Boneh, Amit Sahai, and Brent Waters, Functional
encryption: Definitions and challenges, 8th Theory of

Cryptography Conference, Springer, 2011.

[10] DARPA CBMEN, http:
//www.darpa.mil/NewsEvents/Releases/2013/08/21.aspx

[11] PARC CCN, https://www.parc.com/services/focus-area/
content-centric-networking/

[12] David Cheriton and Mark Gritter, TRIAD: A new
next-generation Internet architecture, 2000.

[13] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail
Ostrovsky, Searchable symmetric encryption: Improved
definitions and efficient constructions, 13th ACM Conference
on Computer and Communications Security, 2006.

[14] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali
Ghodsi, Teemu Koponen, Bruce Maggs, K.C. Ng, Vyas
Sekar, and Scott Shenker, Less pain, most of the gain:
incrementally deployable ICN, ACM SIGCOMM Conference,
2013.

[15] Nikos Fotiou, Giannis Marias, and George Polyzos, Access
control enforcement delegation for information-centric
networking architectures, 2nd ACM Workshop on
Information-Centric Networking, 2012.

[16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova,
Amit Sahai, and Brent Waters, Candidate
indistinguishability obfuscation and functional encryption
for all circuits, 54th IEEE Symposium on Foundations of
Computer Science, 2013.

[17] Ali Ghodsi, Teemu Koponen, Jarno Rajahalme, Pasi
Sarolahti, and Scott Shenker, Naming in content-oriented
architectures, 1st ACM Workshop on Information-Centric
Networking, 2011.

[18] Allison Lewko and Brent Waters, Decentralizing
attribute-based encryption, 30th International Conference
on the Theory and Applications of Cryptographic
Techniques, Springer, 2011.

[19] Van Jacobson, Diana Smetters, James Thornton, Michael
Plass, Nicholas Briggs, and Rebecca Braynard, Networking
named content, 5th International Conference on Emerging
Networking Experiments and Technologies, 2009.

[20] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao, OceanStore: An
architecture for global-scale persistent storage, 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[21] Erik Nordstrom, Christian Rohner, and Per Gunningberg,
Haggle: Opportunistic mobile content sharing using search,
Computer Communications, Vol. 48, Elsevier, 2014.

[22] Ronald Rivest, Adi Shamir, Leonard Adleman, A method for
obtaining digital signatures and public-key cryptosystems,
Communications of the ACM, Vol. 21(2), 1978.

[23] Amit Sahai and Brent Waters, Fuzzy identity-based
encryption, 24th International Conference on the Theory
and Applications of Cryptographic Techniques, 2005.

[24] Transport Layer Security, http://tools.ietf.org/html/rfc5246
[25] Samuel Wood, James Mathewson, Joshua Joy, Mark-Oliver

Stehr, Minyoung Kim, Ashish Gehani, Mario Gerla, Hamid
Sadjadpour, and J.J. Garcia-Luna-Aceves, ICEMAN: A
system for efficient, robust and secure situational awareness
at the network edge, 32nd IEEE Military Communications
Conference, 2013.

[26] Samuel Wood, James Mathewson, Joshua Joy, Mark-Oliver
Stehr, Minyoung Kim, Ashish Gehani, Mario Gerla, Hamid
Sadjadpour, and J.J. Garcia-Luna-Aceves, ICEMAN: A
practical architecture for situational awareness at the
network edge, Logic, Rewriting, and Concurrency, Lecture
Notes in Computer Science, Vol. 9200, Springer, 2015.

[27] George Xylomenos, Christopher Ververidis, Vasilios Siris,
Nikos Fotiou, Christos Tsilopoulos, Xenofon Vasilakos,
Konstantinos Katsaros, and George Polyzos, A survey of
information-centric networking research, IEEE
Communications Surveys and Tutorials, Vol. 16(2), 2014.

